Cargando…
Augmented-syllabification of n-gram tagger for Indonesian words and named-entities
As one of the statistical-based models, an n-gram syllabification commonly gives a high syllable error rate (SER) for Bahasa Indonesia, one of the low-resource languages, since it fails for a high out-of-vocabulary (OOV) rate. Two previous models: bigram-syllabification with flipping onsets (BFO) an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708824/ https://www.ncbi.nlm.nih.gov/pubmed/36468140 http://dx.doi.org/10.1016/j.heliyon.2022.e11922 |