Cargando…

Fully automated condyle segmentation using 3D convolutional neural networks

The aim of this study was to develop an auto-segmentation algorithm for mandibular condyle using the 3D U-Net and perform a stress test to determine the optimal dataset size for achieving clinically acceptable accuracy. 234 cone-beam computed tomography images of mandibular condyles were acquired fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Jha, Nayansi, Kim, Taehun, Ham, Sungwon, Baek, Seung-Hak, Sung, Sang-Jin, Kim, Yoon-Ji, Kim, Namkug
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709043/
https://www.ncbi.nlm.nih.gov/pubmed/36446860
http://dx.doi.org/10.1038/s41598-022-24164-y