Cargando…

A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer

[Image: see text] Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Casajuana-Martin, Nil, Navarro, Gemma, Gonzalez, Angel, Llinas del Torrent, Claudia, Gómez-Autet, Marc, Quintana García, Aleix, Franco, Rafael, Pardo, Leonardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709915/
https://www.ncbi.nlm.nih.gov/pubmed/36302505
http://dx.doi.org/10.1021/acs.jcim.2c00865
_version_ 1784841263563931648
author Casajuana-Martin, Nil
Navarro, Gemma
Gonzalez, Angel
Llinas del Torrent, Claudia
Gómez-Autet, Marc
Quintana García, Aleix
Franco, Rafael
Pardo, Leonardo
author_facet Casajuana-Martin, Nil
Navarro, Gemma
Gonzalez, Angel
Llinas del Torrent, Claudia
Gómez-Autet, Marc
Quintana García, Aleix
Franco, Rafael
Pardo, Leonardo
author_sort Casajuana-Martin, Nil
collection PubMed
description [Image: see text] Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB(2) receptor (CB(2)R). In CB(2)R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala282(7.36)Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators.
format Online
Article
Text
id pubmed-9709915
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97099152022-12-01 A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer Casajuana-Martin, Nil Navarro, Gemma Gonzalez, Angel Llinas del Torrent, Claudia Gómez-Autet, Marc Quintana García, Aleix Franco, Rafael Pardo, Leonardo J Chem Inf Model [Image: see text] Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB(2) receptor (CB(2)R). In CB(2)R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala282(7.36)Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators. American Chemical Society 2022-10-27 2022-11-28 /pmc/articles/PMC9709915/ /pubmed/36302505 http://dx.doi.org/10.1021/acs.jcim.2c00865 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Casajuana-Martin, Nil
Navarro, Gemma
Gonzalez, Angel
Llinas del Torrent, Claudia
Gómez-Autet, Marc
Quintana García, Aleix
Franco, Rafael
Pardo, Leonardo
A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title_full A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title_fullStr A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title_full_unstemmed A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title_short A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB(2) Receptor via the Lipid Bilayer
title_sort single point mutation blocks the entrance of ligands to the cannabinoid cb(2) receptor via the lipid bilayer
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709915/
https://www.ncbi.nlm.nih.gov/pubmed/36302505
http://dx.doi.org/10.1021/acs.jcim.2c00865
work_keys_str_mv AT casajuanamartinnil asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT navarrogemma asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT gonzalezangel asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT llinasdeltorrentclaudia asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT gomezautetmarc asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT quintanagarciaaleix asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT francorafael asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT pardoleonardo asinglepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT casajuanamartinnil singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT navarrogemma singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT gonzalezangel singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT llinasdeltorrentclaudia singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT gomezautetmarc singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT quintanagarciaaleix singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT francorafael singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer
AT pardoleonardo singlepointmutationblockstheentranceofligandstothecannabinoidcb2receptorviathelipidbilayer