Cargando…
MODalyseR—a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data
MOTIVATION: Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on sim...
Autores principales: | de Weerd, Hendrik A, Åkesson, Julia, Guala, Dimitri, Gustafsson, Mika, Lubovac-Pilav, Zelmina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710626/ https://www.ncbi.nlm.nih.gov/pubmed/36699378 http://dx.doi.org/10.1093/bioadv/vbac006 |
Ejemplares similares
-
ComHub: Community predictions of hubs in gene regulatory networks
por: Åkesson, Julia, et al.
Publicado: (2021) -
miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer
por: Borgmästars, Emmy, et al.
Publicado: (2019) -
TFTenricher: a python toolbox for annotation enrichment analysis of transcription factor target genes
por: Magnusson, Rasmus, et al.
Publicado: (2021) -
A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
por: Badam, Tejaswi V. S., et al.
Publicado: (2021) -
Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes
por: Riquelme Medina, Ignacio, et al.
Publicado: (2016)