Cargando…
DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity
Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer’s disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learn...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713304/ https://www.ncbi.nlm.nih.gov/pubmed/36450444 http://dx.doi.org/10.26508/lsa.202201556 |
_version_ | 1784841990261702656 |
---|---|
author | Choi, Chiyeol Kim, Hyerin Oh, Jiyoung Park, Chanho Kim, Min Kim, Chu-Sook Park, Jiyoung |
author_facet | Choi, Chiyeol Kim, Hyerin Oh, Jiyoung Park, Chanho Kim, Min Kim, Chu-Sook Park, Jiyoung |
author_sort | Choi, Chiyeol |
collection | PubMed |
description | Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer’s disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learning and memory impairment. Thus, regulating microglial Aβ clearance is crucial for the development of therapeutics for AD-related dementia. Here, Down syndrome critical region 1 (DSCR1) deficiency ameliorated Aβ plaque deposition in the 5xFAD mouse model of AD by altering microglial activity; however, the Aβ synthesis pathway was not affected. DSCR1 deficiency improved spatial learning and memory impairment in 5xFAD mice. Furthermore, DSCR1-deficient microglia exhibited accelerated lysosomal degradation of Aβ after phagocytosis, and BV2 cells with stable knockdown of DSCR1 demonstrated enhanced lysosomal activity. RNA-sequencing analysis showed that the transcriptional signatures associated with responses to IFN-γ were significantly up-regulated in DSCR1-knockdown BV2 cells treated with Aβ. Our data strongly suggest that DSCR1 is a critical mediator of microglial degradation of amyloid plaques and a new potential microglial therapeutic target in AD. |
format | Online Article Text |
id | pubmed-9713304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-97133042022-12-02 DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity Choi, Chiyeol Kim, Hyerin Oh, Jiyoung Park, Chanho Kim, Min Kim, Chu-Sook Park, Jiyoung Life Sci Alliance Research Articles Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer’s disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learning and memory impairment. Thus, regulating microglial Aβ clearance is crucial for the development of therapeutics for AD-related dementia. Here, Down syndrome critical region 1 (DSCR1) deficiency ameliorated Aβ plaque deposition in the 5xFAD mouse model of AD by altering microglial activity; however, the Aβ synthesis pathway was not affected. DSCR1 deficiency improved spatial learning and memory impairment in 5xFAD mice. Furthermore, DSCR1-deficient microglia exhibited accelerated lysosomal degradation of Aβ after phagocytosis, and BV2 cells with stable knockdown of DSCR1 demonstrated enhanced lysosomal activity. RNA-sequencing analysis showed that the transcriptional signatures associated with responses to IFN-γ were significantly up-regulated in DSCR1-knockdown BV2 cells treated with Aβ. Our data strongly suggest that DSCR1 is a critical mediator of microglial degradation of amyloid plaques and a new potential microglial therapeutic target in AD. Life Science Alliance LLC 2022-11-30 /pmc/articles/PMC9713304/ /pubmed/36450444 http://dx.doi.org/10.26508/lsa.202201556 Text en © 2022 Choi et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Choi, Chiyeol Kim, Hyerin Oh, Jiyoung Park, Chanho Kim, Min Kim, Chu-Sook Park, Jiyoung DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title | DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title_full | DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title_fullStr | DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title_full_unstemmed | DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title_short | DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer’s disease by enhancing microglial activity |
title_sort | dscr1 deficiency ameliorates the aβ pathology of alzheimer’s disease by enhancing microglial activity |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713304/ https://www.ncbi.nlm.nih.gov/pubmed/36450444 http://dx.doi.org/10.26508/lsa.202201556 |
work_keys_str_mv | AT choichiyeol dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT kimhyerin dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT ohjiyoung dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT parkchanho dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT kimmin dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT kimchusook dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity AT parkjiyoung dscr1deficiencyamelioratestheabpathologyofalzheimersdiseasebyenhancingmicroglialactivity |