Cargando…
Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity
The sodium–potassium–chloride transporter NKCC1 of the SLC12 family performs Na(+)‐dependent Cl(−)‐ and K(+)‐ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the centra...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713717/ https://www.ncbi.nlm.nih.gov/pubmed/36239040 http://dx.doi.org/10.15252/embj.2021110169 |
_version_ | 1784842070004858880 |
---|---|
author | Neumann, Caroline Rosenbæk, Lena Lindtoft Flygaard, Rasmus Kock Habeck, Michael Karlsen, Jesper Lykkegaard Wang, Yong Lindorff‐Larsen, Kresten Gad, Hans Henrik Hartmann, Rune Lyons, Joseph Anthony Fenton, Robert A Nissen, Poul |
author_facet | Neumann, Caroline Rosenbæk, Lena Lindtoft Flygaard, Rasmus Kock Habeck, Michael Karlsen, Jesper Lykkegaard Wang, Yong Lindorff‐Larsen, Kresten Gad, Hans Henrik Hartmann, Rune Lyons, Joseph Anthony Fenton, Robert A Nissen, Poul |
author_sort | Neumann, Caroline |
collection | PubMed |
description | The sodium–potassium–chloride transporter NKCC1 of the SLC12 family performs Na(+)‐dependent Cl(−)‐ and K(+)‐ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo‐electron microscopy structure of human NKCC1 in the substrate‐loaded (Na(+), K(+), and 2 Cl(−)) and occluded, inward‐facing state that has also been observed for the SLC6‐type transporters MhsT and LeuT. Cl(−) binding at the Cl1 site together with the nearby K(+) ion provides a crucial bridge between the LeuT‐fold scaffold and bundle domains. Cl(−)‐ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl(−)‐sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na(+) release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure–function relationship of NKCC1 with broader implications for other SLC12 family members. |
format | Online Article Text |
id | pubmed-9713717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97137172022-12-08 Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity Neumann, Caroline Rosenbæk, Lena Lindtoft Flygaard, Rasmus Kock Habeck, Michael Karlsen, Jesper Lykkegaard Wang, Yong Lindorff‐Larsen, Kresten Gad, Hans Henrik Hartmann, Rune Lyons, Joseph Anthony Fenton, Robert A Nissen, Poul EMBO J Articles The sodium–potassium–chloride transporter NKCC1 of the SLC12 family performs Na(+)‐dependent Cl(−)‐ and K(+)‐ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo‐electron microscopy structure of human NKCC1 in the substrate‐loaded (Na(+), K(+), and 2 Cl(−)) and occluded, inward‐facing state that has also been observed for the SLC6‐type transporters MhsT and LeuT. Cl(−) binding at the Cl1 site together with the nearby K(+) ion provides a crucial bridge between the LeuT‐fold scaffold and bundle domains. Cl(−)‐ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl(−)‐sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na(+) release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure–function relationship of NKCC1 with broader implications for other SLC12 family members. John Wiley and Sons Inc. 2022-10-14 /pmc/articles/PMC9713717/ /pubmed/36239040 http://dx.doi.org/10.15252/embj.2021110169 Text en ©2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Neumann, Caroline Rosenbæk, Lena Lindtoft Flygaard, Rasmus Kock Habeck, Michael Karlsen, Jesper Lykkegaard Wang, Yong Lindorff‐Larsen, Kresten Gad, Hans Henrik Hartmann, Rune Lyons, Joseph Anthony Fenton, Robert A Nissen, Poul Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title | Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title_full | Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title_fullStr | Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title_full_unstemmed | Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title_short | Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity |
title_sort | cryo‐em structure of the human nkcc1 transporter reveals mechanisms of ion coupling and specificity |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713717/ https://www.ncbi.nlm.nih.gov/pubmed/36239040 http://dx.doi.org/10.15252/embj.2021110169 |
work_keys_str_mv | AT neumanncaroline cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT rosenbæklenalindtoft cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT flygaardrasmuskock cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT habeckmichael cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT karlsenjesperlykkegaard cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT wangyong cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT lindorfflarsenkresten cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT gadhanshenrik cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT hartmannrune cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT lyonsjosephanthony cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT fentonroberta cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity AT nissenpoul cryoemstructureofthehumannkcc1transporterrevealsmechanismsofioncouplingandspecificity |