Cargando…

Genome-edited zebrafish model of ABCC8 loss-of-function disease

ATP-sensitive potassium channel (K(ATP))gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete K(ATP) LOF do reiterate mild hyperinsulinism, K(ATP) knockout animals do not ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikle, Jennifer M., Tryon, Robert C., Singareddy, Soma S., York, Nathaniel W., Remedi, Maria S., Nichols, Colin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721409/
https://www.ncbi.nlm.nih.gov/pubmed/36458573
http://dx.doi.org/10.1080/19382014.2022.2149206
_version_ 1784843767906304000
author Ikle, Jennifer M.
Tryon, Robert C.
Singareddy, Soma S.
York, Nathaniel W.
Remedi, Maria S.
Nichols, Colin G.
author_facet Ikle, Jennifer M.
Tryon, Robert C.
Singareddy, Soma S.
York, Nathaniel W.
Remedi, Maria S.
Nichols, Colin G.
author_sort Ikle, Jennifer M.
collection PubMed
description ATP-sensitive potassium channel (K(ATP))gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete K(ATP) LOF do reiterate mild hyperinsulinism, K(ATP) knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical K(ATP) channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in β-cells from K499X (SUR1(−/−)) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1(−/−) fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of K(ATP) -dependent pancreatic diseases.
format Online
Article
Text
id pubmed-9721409
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-97214092022-12-06 Genome-edited zebrafish model of ABCC8 loss-of-function disease Ikle, Jennifer M. Tryon, Robert C. Singareddy, Soma S. York, Nathaniel W. Remedi, Maria S. Nichols, Colin G. Islets Research Article ATP-sensitive potassium channel (K(ATP))gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete K(ATP) LOF do reiterate mild hyperinsulinism, K(ATP) knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical K(ATP) channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in β-cells from K499X (SUR1(−/−)) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1(−/−) fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of K(ATP) -dependent pancreatic diseases. Taylor & Francis 2022-12-02 /pmc/articles/PMC9721409/ /pubmed/36458573 http://dx.doi.org/10.1080/19382014.2022.2149206 Text en © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ikle, Jennifer M.
Tryon, Robert C.
Singareddy, Soma S.
York, Nathaniel W.
Remedi, Maria S.
Nichols, Colin G.
Genome-edited zebrafish model of ABCC8 loss-of-function disease
title Genome-edited zebrafish model of ABCC8 loss-of-function disease
title_full Genome-edited zebrafish model of ABCC8 loss-of-function disease
title_fullStr Genome-edited zebrafish model of ABCC8 loss-of-function disease
title_full_unstemmed Genome-edited zebrafish model of ABCC8 loss-of-function disease
title_short Genome-edited zebrafish model of ABCC8 loss-of-function disease
title_sort genome-edited zebrafish model of abcc8 loss-of-function disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721409/
https://www.ncbi.nlm.nih.gov/pubmed/36458573
http://dx.doi.org/10.1080/19382014.2022.2149206
work_keys_str_mv AT iklejenniferm genomeeditedzebrafishmodelofabcc8lossoffunctiondisease
AT tryonrobertc genomeeditedzebrafishmodelofabcc8lossoffunctiondisease
AT singareddysomas genomeeditedzebrafishmodelofabcc8lossoffunctiondisease
AT yorknathanielw genomeeditedzebrafishmodelofabcc8lossoffunctiondisease
AT remedimarias genomeeditedzebrafishmodelofabcc8lossoffunctiondisease
AT nicholscoling genomeeditedzebrafishmodelofabcc8lossoffunctiondisease