Cargando…

CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models

PURPOSE: Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis...

Descripción completa

Detalles Bibliográficos
Autores principales: Quijano-Rubio, Clara, Silginer, Manuela, Weller, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722998/
https://www.ncbi.nlm.nih.gov/pubmed/36355258
http://dx.doi.org/10.1007/s11060-022-04137-x
Descripción
Sumario:PURPOSE: Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis mediator upon CD95L engagement. Strategic targeting of non-apoptotic or apoptotic CD95 signaling may hold anti-glioblastoma potential. Due to its antithetic nature, understanding the constitutive role of CD95 signaling in glioblastoma is indispensable. METHODS: We abrogated constitutive Cd95 and Cd95l gene expression by CRISPR/Cas9 in murine glioma models and characterized the consequences of gene deletion in vitro and in vivo. RESULTS: Expression of canonical CD95 but not CD95L was identified in mouse glioma cells in vitro. Instead, a soluble isoform-encoding non-canonical Cd95l transcript variant was detected. In vivo, an upregulation of the membrane-bound canonical CD95L form was revealed. Cd95 or Cd95l gene deletion decreased cell growth in vitro. The growth-supporting role of constitutive CD95 signaling was validated by Cd95 re-transfection, which rescued growth. In vivo, Cd95 or Cd95l gene deletion prolonged survival involving tumor-intrinsic and immunological mechanisms in the SMA-497 model. In the GL-261 model, that expresses no CD95, only CD95L gene deletion prolonged survival, involving a tumor-intrinsic mechanism. CONCLUSION: Non-canonical CD95L/CD95 interactions are growth-promoting in murine glioma models, and glioma growth and immunosuppression may be simultaneously counteracted by Cd95l gene silencing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-04137-x.