Cargando…
Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer’s disease
The Alzheimer’s disease-associated peptide amyloid-beta (Aβ) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723144/ https://www.ncbi.nlm.nih.gov/pubmed/36471155 http://dx.doi.org/10.1038/s41598-022-25364-2 |
Sumario: | The Alzheimer’s disease-associated peptide amyloid-beta (Aβ) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electrophysiology in freely moving mice expressing human Aβ, here we show that Aβ aggregates perturbed neural systems in a state-dependent fashion, driving neuronal hyperactivity in exploratory behavior and slow wave sleep (SWS), yet suppressing activity in quiet wakefulness (QW) and REM sleep. In exploratory behavior and REM sleep, Aβ impaired hippocampal theta–gamma phase-amplitude coupling and altered neuronal synchronization with theta. In SWS, Aβ reduced cortical slow oscillation (SO) power, the coordination of hippocampal sharp wave-ripples with both the SO and thalamocortical spindles, and the coordination of calcium transients with the sharp wave-ripple. Physostigmine improved Aβ-associated hyperactivity in exploratory behavior and hypoactivity in QW and expanded the range of gamma that coupled with theta phase, but exacerbated hypoactivity in exploratory behavior. Together, these findings show that the effects of Aβ alone on hippocampal circuit function are profoundly state dependent and suggest a reformulation of therapeutic strategies aimed at Aβ induced hyperexcitability. |
---|