Cargando…
SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells
Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8(+) T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727756/ https://www.ncbi.nlm.nih.gov/pubmed/36482965 http://dx.doi.org/10.1101/2022.11.29.518257 |
_version_ | 1784845093904056320 |
---|---|
author | Vargas-Zapata, Valerie Geiger, Kristina M. Tran, Dan Ma, Jessica Mao, Xiaowen Puschnik, Andreas S. Coscoy, Laurent |
author_facet | Vargas-Zapata, Valerie Geiger, Kristina M. Tran, Dan Ma, Jessica Mao, Xiaowen Puschnik, Andreas S. Coscoy, Laurent |
author_sort | Vargas-Zapata, Valerie |
collection | PubMed |
description | Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8(+) T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44’s interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP’s reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease. |
format | Online Article Text |
id | pubmed-9727756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-97277562022-12-08 SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells Vargas-Zapata, Valerie Geiger, Kristina M. Tran, Dan Ma, Jessica Mao, Xiaowen Puschnik, Andreas S. Coscoy, Laurent bioRxiv Article Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8(+) T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44’s interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP’s reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease. Cold Spring Harbor Laboratory 2022-11-30 /pmc/articles/PMC9727756/ /pubmed/36482965 http://dx.doi.org/10.1101/2022.11.29.518257 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Vargas-Zapata, Valerie Geiger, Kristina M. Tran, Dan Ma, Jessica Mao, Xiaowen Puschnik, Andreas S. Coscoy, Laurent SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title | SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title_full | SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title_fullStr | SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title_full_unstemmed | SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title_short | SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells |
title_sort | sars-cov-2 envelope-mediated golgi ph dysregulation interferes with eraap retention in cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727756/ https://www.ncbi.nlm.nih.gov/pubmed/36482965 http://dx.doi.org/10.1101/2022.11.29.518257 |
work_keys_str_mv | AT vargaszapatavalerie sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT geigerkristinam sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT trandan sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT majessica sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT maoxiaowen sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT puschnikandreass sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells AT coscoylaurent sarscov2envelopemediatedgolgiphdysregulationinterfereswitheraapretentionincells |