Cargando…

Conformational sampling of CMT-2D associated GlyRS mutations

During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing...

Descripción completa

Detalles Bibliográficos
Autores principales: Childers, Matthew Carter, Regnier, Michael, Bothwell, Mark, Smith, Alec S.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731397/
https://www.ncbi.nlm.nih.gov/pubmed/36504507
http://dx.doi.org/10.1016/j.brain.2022.100054
_version_ 1784845892100030464
author Childers, Matthew Carter
Regnier, Michael
Bothwell, Mark
Smith, Alec S.T.
author_facet Childers, Matthew Carter
Regnier, Michael
Bothwell, Mark
Smith, Alec S.T.
author_sort Childers, Matthew Carter
collection PubMed
description During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing diverse techniques have identified potential disease mechanisms at the molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer interface. However, no atomic structures bearing these mutations have been solved. Consequently, the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been definitively established. Here we use molecular dynamics simulations to probe conformational changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. Our results show that the mutation alters the number of native interactions at the dimer interface and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with tRNA binding. Additionally, we use our simulations to make predictions about the effects of other clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. Statement of significance: In this study, we use molecular dynamics simulations to elucidate structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics that elude in vitro structural characterization. Our computational approach provides unparalleled atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS have similarity that elude in vitro structural characterization. Our simulations provide insights into disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational data to identify regions of GlyRS critical to its function and to predict the effects of other disease-associated mutations. These results open up new directions for research into the molecular characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms.
format Online
Article
Text
id pubmed-9731397
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-97313972022-12-08 Conformational sampling of CMT-2D associated GlyRS mutations Childers, Matthew Carter Regnier, Michael Bothwell, Mark Smith, Alec S.T. Brain Multiphys Article During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing diverse techniques have identified potential disease mechanisms at the molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer interface. However, no atomic structures bearing these mutations have been solved. Consequently, the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been definitively established. Here we use molecular dynamics simulations to probe conformational changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. Our results show that the mutation alters the number of native interactions at the dimer interface and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with tRNA binding. Additionally, we use our simulations to make predictions about the effects of other clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. Statement of significance: In this study, we use molecular dynamics simulations to elucidate structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics that elude in vitro structural characterization. Our computational approach provides unparalleled atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS have similarity that elude in vitro structural characterization. Our simulations provide insights into disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational data to identify regions of GlyRS critical to its function and to predict the effects of other disease-associated mutations. These results open up new directions for research into the molecular characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms. 2022 2022-09-06 /pmc/articles/PMC9731397/ /pubmed/36504507 http://dx.doi.org/10.1016/j.brain.2022.100054 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Childers, Matthew Carter
Regnier, Michael
Bothwell, Mark
Smith, Alec S.T.
Conformational sampling of CMT-2D associated GlyRS mutations
title Conformational sampling of CMT-2D associated GlyRS mutations
title_full Conformational sampling of CMT-2D associated GlyRS mutations
title_fullStr Conformational sampling of CMT-2D associated GlyRS mutations
title_full_unstemmed Conformational sampling of CMT-2D associated GlyRS mutations
title_short Conformational sampling of CMT-2D associated GlyRS mutations
title_sort conformational sampling of cmt-2d associated glyrs mutations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731397/
https://www.ncbi.nlm.nih.gov/pubmed/36504507
http://dx.doi.org/10.1016/j.brain.2022.100054
work_keys_str_mv AT childersmatthewcarter conformationalsamplingofcmt2dassociatedglyrsmutations
AT regniermichael conformationalsamplingofcmt2dassociatedglyrsmutations
AT bothwellmark conformationalsamplingofcmt2dassociatedglyrsmutations
AT smithalecst conformationalsamplingofcmt2dassociatedglyrsmutations