Cargando…

Insulin and IGF-1 elicit robust transcriptional regulation to modulate autophagy in astrocytes

OBJECTIVE: Insulin is a principal metabolic hormone. It regulates a plethora of metabolic pathways in peripheral tissues. The highly homologous insulin-like growth factor 1 (IGF-1), on the other hand, is important for development and growth. Recent studies have shown that insulin and IGF-1 signaling...

Descripción completa

Detalles Bibliográficos
Autores principales: Geffken, Shawn J., Moon, Sohyun, Smith, Catherine O., Tang, Sharon, Lee, Hiu Ham, Lewis, Kevin, Wong, Chun Wa, Huang, Yuan, Huang, Qian, Zhao, Ying-Tao, Cai, Weikang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731889/
https://www.ncbi.nlm.nih.gov/pubmed/36503893
http://dx.doi.org/10.1016/j.molmet.2022.101647
Descripción
Sumario:OBJECTIVE: Insulin is a principal metabolic hormone. It regulates a plethora of metabolic pathways in peripheral tissues. The highly homologous insulin-like growth factor 1 (IGF-1), on the other hand, is important for development and growth. Recent studies have shown that insulin and IGF-1 signaling plays fundamental roles in the brain. Loss of insulin or IGF-1 receptors in astrocytes leads to altered glucose handling, mitochondrial metabolism, neurovascular coupling, and behavioral abnormalities in mice. Here, we aim to investigate molecular mechanisms by which insulin and IGF-1 signaling regulates astrocyte functions. METHODS: IR-flox and IRKO primary astrocytes were treated with 100 nM insulin or IGF-1 for 6 h, and their transcriptomes were analyzed. Astrocytes with either IR deletion, IGF1R deletion or both were used to examine receptor-dependent transcriptional regulations using qPCR. Additional immunoblotting and confocal imaging studies were performed to functionally validate pathways involved in protein homeostasis. RESULTS: Using next-generation RNA sequencing, we show that insulin significantly regulates the expression of over 1,200 genes involved in multiple functional processes in primary astrocytes. Insulin-like growth factor 1 (IGF-1) triggers a similar robust transcriptional regulation in astrocytes. Thus, over 50% of the differentially expressed genes are regulated by both ligands. As expected, these commonly regulated genes are highly enriched in pathways involved in lipid and cholesterol biosynthesis. Additionally, insulin and IGF-1 induce the expression of genes involved in ribosomal biogenesis, while suppressing the expression of genes involved in autophagy, indicating a common role of insulin and IGF-1 on protein homeostasis in astrocytes. Insulin-dependent suppression of autophagy genes, including p62, Ulk1/2, and several Atg genes, is blunted only when both IR and IGF1R are deleted. CONCLUSIONS: In summary, insulin and IGF-1 potently suppress autophagy in astrocytes through transcriptional regulation. Both IR and IGF1R can elicit ligand-dependent transcriptional suppression of autophagy. These results demonstrate an important role of astrocytic insulin/IGF-1 signaling on proteostasis. Impairment of this regulation in insulin resistance and diabetes may contribute to neurological complications related to diabetes.