Cargando…
A machine learning framework for scRNA-seq UMI threshold optimization and accurate classification of cell types
Recent advances in single cell RNA sequencing (scRNA-seq) technologies have been invaluable in the study of the diversity of cancer cells and the tumor microenvironment. While scRNA-seq platforms allow processing of a high number of cells, uneven read quality and technical artifacts hinder the abili...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732024/ https://www.ncbi.nlm.nih.gov/pubmed/36506328 http://dx.doi.org/10.3389/fgene.2022.982019 |