Cargando…

Optimization of Wall Material of Freeze-Dried High-Bioactive Microcapsules with Yellow Onion Rejects Using Simplex Centroid Mixture Design Approach Based on Whey Protein Isolate, Pectin, and Sodium Caseinate as Incorporated Variables

For the food sector, onion rejects are an appealing source of value-added byproducts. Bioactive compounds were recovered from yellow onion rejects using a pulse electric field process at 6000 v and 60 pulses. The onion extract was encapsulated with whey protein isolate (WPI), pectin (P), and sodium...

Descripción completa

Detalles Bibliográficos
Autores principales: Azarpazhooh, Elham, Sharayei, Parvin, Rui, Xin, Gharibi-Tehrani, Mehranoosh, Ramaswamy, Hosahalli S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735820/
https://www.ncbi.nlm.nih.gov/pubmed/36500604
http://dx.doi.org/10.3390/molecules27238509
Descripción
Sumario:For the food sector, onion rejects are an appealing source of value-added byproducts. Bioactive compounds were recovered from yellow onion rejects using a pulse electric field process at 6000 v and 60 pulses. The onion extract was encapsulated with whey protein isolate (WPI), pectin (P), and sodium caseinate (SC) with a mass ratio of 1:5 (extract/wall material, w/w). A Simplex lattice with augmented axial points in the mixture design was applied for the optimization of wall material for the encapsulation of onion reject extract by freeze-drying (FD). The optimal wall materials were 47.6 g/100 g (SC), 10.0 g/100 g (P), and 42.4 g/100 g (WPI), with encapsulation yield (EY) of 85.1%, total phenolic content (TPC) of 48.7 mg gallic acid equivalent/g DW, total flavonoid content (TFC) of 92.0 mg quercetin equivalent/g DW, and DPPH capacity of 76.1%, respectively. The morphological properties of the optimal encapsulate demonstrated spherical particles with a rough surface. At optimal conditions, the minimum inhibitory concentration (MIC) of the extract (mean diameter of inhibition zone: 18.8 mm) was shown as antifungal activity against Aspergillus niger.