Cargando…
Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines
We developed a straightforward synthetic route to pharmacologically important 1,5-substituted pyrrolidin-2-ones from donor–acceptor cyclopropanes bearing an ester group as one of the acceptor substituents. This method includes a Lewis acid-catalyzed opening of the donor–acceptor cyclopropane with pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735934/ https://www.ncbi.nlm.nih.gov/pubmed/36500574 http://dx.doi.org/10.3390/molecules27238468 |
Sumario: | We developed a straightforward synthetic route to pharmacologically important 1,5-substituted pyrrolidin-2-ones from donor–acceptor cyclopropanes bearing an ester group as one of the acceptor substituents. This method includes a Lewis acid-catalyzed opening of the donor–acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide range of donor–acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents can be involved in this transformation. In this process, donor–acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines react as 1,1-dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives. |
---|