Cargando…
Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice
In adoptive T cell therapy (ACT), the transfer of tumor-specific T cells is paralleled by the conditioning regimen to increase therapeutic efficacy. Pre-conditioning depletes immune-suppressive cells and post-conditioning increases homeostatic signals to improve the persistence of administered T cel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737859/ https://www.ncbi.nlm.nih.gov/pubmed/36497152 http://dx.doi.org/10.3390/cells11233894 |
_version_ | 1784847393299103744 |
---|---|
author | Kim, Seon-Hee Go, Eun Mi Shin, Dong Hoon Choi, Beom K. Han, Chungyong |
author_facet | Kim, Seon-Hee Go, Eun Mi Shin, Dong Hoon Choi, Beom K. Han, Chungyong |
author_sort | Kim, Seon-Hee |
collection | PubMed |
description | In adoptive T cell therapy (ACT), the transfer of tumor-specific T cells is paralleled by the conditioning regimen to increase therapeutic efficacy. Pre-conditioning depletes immune-suppressive cells and post-conditioning increases homeostatic signals to improve the persistence of administered T cells. Identifying the favorable immunological factors involved in a conditioning regimen is important to design effective strategies in ACT. Here, by using an ACT model of murine melanoma, we evaluate the effect of the total body irradiation (TBI) and interleukin-2 (IL-2) treatment combination. The use of a Rag1 knock-out strain, which lacks endogenous T cells, enables the identification of factors in a way that focuses more on transferred T cells. We demonstrate that the TBI/IL-2 combination has no additive effect in ACT, although each conditioning improves the therapeutic outcome. While the combination increases the frequency of transferred T cells in lymphoid and tumor tissues, the activation intensity of the cells is reduced compared to that of the sole TBI treatment. Notably, we show that in the presence of TBI, the IL-2 treatment reduces the frequency of intra-tumoral dendritic cells, which are crucial for T cell activation. The current study provides insights into the immunological events involved in the TBI/IL-2 combination in ACT. |
format | Online Article Text |
id | pubmed-9737859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97378592022-12-11 Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice Kim, Seon-Hee Go, Eun Mi Shin, Dong Hoon Choi, Beom K. Han, Chungyong Cells Article In adoptive T cell therapy (ACT), the transfer of tumor-specific T cells is paralleled by the conditioning regimen to increase therapeutic efficacy. Pre-conditioning depletes immune-suppressive cells and post-conditioning increases homeostatic signals to improve the persistence of administered T cells. Identifying the favorable immunological factors involved in a conditioning regimen is important to design effective strategies in ACT. Here, by using an ACT model of murine melanoma, we evaluate the effect of the total body irradiation (TBI) and interleukin-2 (IL-2) treatment combination. The use of a Rag1 knock-out strain, which lacks endogenous T cells, enables the identification of factors in a way that focuses more on transferred T cells. We demonstrate that the TBI/IL-2 combination has no additive effect in ACT, although each conditioning improves the therapeutic outcome. While the combination increases the frequency of transferred T cells in lymphoid and tumor tissues, the activation intensity of the cells is reduced compared to that of the sole TBI treatment. Notably, we show that in the presence of TBI, the IL-2 treatment reduces the frequency of intra-tumoral dendritic cells, which are crucial for T cell activation. The current study provides insights into the immunological events involved in the TBI/IL-2 combination in ACT. MDPI 2022-12-02 /pmc/articles/PMC9737859/ /pubmed/36497152 http://dx.doi.org/10.3390/cells11233894 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Seon-Hee Go, Eun Mi Shin, Dong Hoon Choi, Beom K. Han, Chungyong Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title | Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title_full | Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title_fullStr | Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title_full_unstemmed | Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title_short | Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice |
title_sort | pro- and anti-tumoral factors involved in total body irradiation and interleukin-2 conditioning in adoptive t cell therapy of melanoma-bearing rag1 knock-out mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737859/ https://www.ncbi.nlm.nih.gov/pubmed/36497152 http://dx.doi.org/10.3390/cells11233894 |
work_keys_str_mv | AT kimseonhee proandantitumoralfactorsinvolvedintotalbodyirradiationandinterleukin2conditioninginadoptivetcelltherapyofmelanomabearingrag1knockoutmice AT goeunmi proandantitumoralfactorsinvolvedintotalbodyirradiationandinterleukin2conditioninginadoptivetcelltherapyofmelanomabearingrag1knockoutmice AT shindonghoon proandantitumoralfactorsinvolvedintotalbodyirradiationandinterleukin2conditioninginadoptivetcelltherapyofmelanomabearingrag1knockoutmice AT choibeomk proandantitumoralfactorsinvolvedintotalbodyirradiationandinterleukin2conditioninginadoptivetcelltherapyofmelanomabearingrag1knockoutmice AT hanchungyong proandantitumoralfactorsinvolvedintotalbodyirradiationandinterleukin2conditioninginadoptivetcelltherapyofmelanomabearingrag1knockoutmice |