Cargando…
SLAM Back-End Optimization Algorithm Based on Vision Fusion IPS
SLAM (Simultaneous Localization and Mapping) is mainly composed of five parts: sensor data reading, front-end visual odometry, back-end optimization, loopback detection, and map building. And when visual SLAM is estimated by visual odometry only, cumulative drift will inevitably occur. Loopback dete...
Autores principales: | Xia, Yu, Cheng, Jingdi, Cai, Xuhang, Zhang, Shanjun, Zhu, Junwu, Zhu, Liucun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739104/ https://www.ncbi.nlm.nih.gov/pubmed/36502063 http://dx.doi.org/10.3390/s22239362 |
Ejemplares similares
-
VILO SLAM: Tightly Coupled Binocular Vision–Inertia SLAM Combined with LiDAR
por: Peng, Gang, et al.
Publicado: (2023) -
GPS-SLAM: An Augmentation of the ORB-SLAM Algorithm
por: Kiss-Illés, Dániel, et al.
Publicado: (2019) -
2D LiDAR SLAM Back-End Optimization with Control Network Constraint for Mobile Mapping
por: Wen, Jingren, et al.
Publicado: (2018) -
SLAM and 3D Semantic Reconstruction Based on the Fusion of Lidar and Monocular Vision
por: Lou, Lu, et al.
Publicado: (2023) -
LFVB-BioSLAM: A Bionic SLAM System with a Light-Weight LiDAR Front End and a Bio-Inspired Visual Back End
por: Gao, Ruilan, et al.
Publicado: (2023)