Cargando…
Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement
We have designed a hot-plate-type micro-Pirani vacuum gauge with a simple structure and compatibility with conventional semiconductor fabrication processes. In the Pirani gauge, we used a vanadium oxide (VOx) membrane as the thermosensitive component, taking advantage of the high temperature coeffic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739492/ https://www.ncbi.nlm.nih.gov/pubmed/36501977 http://dx.doi.org/10.3390/s22239275 |
_version_ | 1784847819825217536 |
---|---|
author | Guo, Song Feng, Liuhaodong Chen, Shuo Ji, Yucheng Peng, Xinlin Xu, Yang Yin, Yong Wang, Shinan |
author_facet | Guo, Song Feng, Liuhaodong Chen, Shuo Ji, Yucheng Peng, Xinlin Xu, Yang Yin, Yong Wang, Shinan |
author_sort | Guo, Song |
collection | PubMed |
description | We have designed a hot-plate-type micro-Pirani vacuum gauge with a simple structure and compatibility with conventional semiconductor fabrication processes. In the Pirani gauge, we used a vanadium oxide (VOx) membrane as the thermosensitive component, taking advantage of the high temperature coefficient of resistance (TCR) of VOx. The TCR value of VOx is [Formula: see text] , an order of magnitude higher than those of other thermal-sensitive materials, such as platinum and titanium ([Formula: see text]). On one hand, we used the high TCR of VOx to increase the Pirani sensitivity. On the other hand, we optimized the floating structure to decrease the thermal conductivity so that the detecting range of the Pirani gauge was extended on the low-pressure end. We carried out simulation experiments on the thermal zone of the Pirani gauge, the width of the cantilever beam, the material and thickness of the supporting layer, the thickness of the thermal layer (VOx), the depth of the cavity, and the shape and size. Finally, we decided on the basic size of the Pirani gauge. The prepared Pirani gauge has a thermal sensitive area of 130 × 130 μm(2), with a cantilever width of 13 μm, cavity depth of 5 μm, supporting layer thickness of 300 nm, and VOx layer thickness of 110 nm. It has a dynamic range of 10(−1)~10(4) Pa and a sensitivity of 1.23 V/lgPa. The VOx Pirani was designed using a structure and fabrication process compatible with a VOx-based uncooled infrared microbolometer so that it can be integrated by wafer level. This work contains only our MEMS Pirani gauge device design, preparation process design, and readout circuit design, while the characterization and relevant experimental results will be reported in the future. |
format | Online Article Text |
id | pubmed-9739492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97394922022-12-11 Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement Guo, Song Feng, Liuhaodong Chen, Shuo Ji, Yucheng Peng, Xinlin Xu, Yang Yin, Yong Wang, Shinan Sensors (Basel) Article We have designed a hot-plate-type micro-Pirani vacuum gauge with a simple structure and compatibility with conventional semiconductor fabrication processes. In the Pirani gauge, we used a vanadium oxide (VOx) membrane as the thermosensitive component, taking advantage of the high temperature coefficient of resistance (TCR) of VOx. The TCR value of VOx is [Formula: see text] , an order of magnitude higher than those of other thermal-sensitive materials, such as platinum and titanium ([Formula: see text]). On one hand, we used the high TCR of VOx to increase the Pirani sensitivity. On the other hand, we optimized the floating structure to decrease the thermal conductivity so that the detecting range of the Pirani gauge was extended on the low-pressure end. We carried out simulation experiments on the thermal zone of the Pirani gauge, the width of the cantilever beam, the material and thickness of the supporting layer, the thickness of the thermal layer (VOx), the depth of the cavity, and the shape and size. Finally, we decided on the basic size of the Pirani gauge. The prepared Pirani gauge has a thermal sensitive area of 130 × 130 μm(2), with a cantilever width of 13 μm, cavity depth of 5 μm, supporting layer thickness of 300 nm, and VOx layer thickness of 110 nm. It has a dynamic range of 10(−1)~10(4) Pa and a sensitivity of 1.23 V/lgPa. The VOx Pirani was designed using a structure and fabrication process compatible with a VOx-based uncooled infrared microbolometer so that it can be integrated by wafer level. This work contains only our MEMS Pirani gauge device design, preparation process design, and readout circuit design, while the characterization and relevant experimental results will be reported in the future. MDPI 2022-11-29 /pmc/articles/PMC9739492/ /pubmed/36501977 http://dx.doi.org/10.3390/s22239275 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Song Feng, Liuhaodong Chen, Shuo Ji, Yucheng Peng, Xinlin Xu, Yang Yin, Yong Wang, Shinan Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title | Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title_full | Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title_fullStr | Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title_full_unstemmed | Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title_short | Design of a High Sensitivity Pirani Gauge Based on Vanadium Oxide Film for High Vacuum Measurement |
title_sort | design of a high sensitivity pirani gauge based on vanadium oxide film for high vacuum measurement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739492/ https://www.ncbi.nlm.nih.gov/pubmed/36501977 http://dx.doi.org/10.3390/s22239275 |
work_keys_str_mv | AT guosong designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT fengliuhaodong designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT chenshuo designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT jiyucheng designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT pengxinlin designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT xuyang designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT yinyong designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement AT wangshinan designofahighsensitivitypiranigaugebasedonvanadiumoxidefilmforhighvacuummeasurement |