Cargando…

Deposition Mechanism and Properties of Plasma-Enhanced Atomic Layer Deposited Gallium Nitride Films with Different Substrate Temperatures

Gallium nitride (GaN) is a wide bandgap semiconductor with remarkable chemical and thermal stability, making it a competitive candidate for a variety of optoelectronic applications. In this study, GaN films are grown using a plasma-enhanced atomic layer deposition (PEALD) with trimethylgallium (TMG)...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Fang-Bin, Jiang, Shi-Cong, Hsu, Chia-Hsun, Zhang, Xiao-Ying, Gao, Peng, Wu, Wan-Yu, Chiu, Yi-Jui, Lien, Shui-Yang, Zhu, Wen-Zhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740686/
https://www.ncbi.nlm.nih.gov/pubmed/36500217
http://dx.doi.org/10.3390/molecules27238123
Descripción
Sumario:Gallium nitride (GaN) is a wide bandgap semiconductor with remarkable chemical and thermal stability, making it a competitive candidate for a variety of optoelectronic applications. In this study, GaN films are grown using a plasma-enhanced atomic layer deposition (PEALD) with trimethylgallium (TMG) and NH(3) plasma. The effect of substrate temperature on growth mechanism and properties of the PEALD GaN films is systematically studied. The experimental results show that the self-limiting surface chemical reactions occur in the substrate temperature range of 250–350 °C. The substrate temperature strongly affects the crystalline structure, which is nearly amorphous at below 250 °C, with (100) as the major phase at below 400 °C, and (002) dominated at higher temperatures. The X-ray photoelectron spectroscopy spectra reveals the unintentional oxygen incorporation into the films in the forms of Ga(2)O(3) and Ga-OH. The amount of Ga-O component decreases, whereas the Ga-Ga component rapidly increases at 400 and 450 °C, due to the decomposition of TMG. The substrate temperature of 350 °C with the highest amount of Ga-N bonds is, therefore, considered the optimum substrate temperature. This study is helpful for improving the quality of PEALD GaN films.