Cargando…

Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data

Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes’ energy consumption data. From the literature, it has been identified that the data imputation wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kasaraneni, Purna Prakash, Venkata Pavan Kumar, Yellapragada, Moganti, Ganesh Lakshmana Kumar, Kannan, Ramani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741071/
https://www.ncbi.nlm.nih.gov/pubmed/36502025
http://dx.doi.org/10.3390/s22239323