Cargando…
Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data
Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes’ energy consumption data. From the literature, it has been identified that the data imputation wi...
Autores principales: | Kasaraneni, Purna Prakash, Venkata Pavan Kumar, Yellapragada, Moganti, Ganesh Lakshmana Kumar, Kannan, Ramani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741071/ https://www.ncbi.nlm.nih.gov/pubmed/36502025 http://dx.doi.org/10.3390/s22239323 |
Ejemplares similares
-
Communication Technologies for Interoperable Smart Microgrids in Urban Energy Community: A Broad Review of the State of the Art, Challenges, and Research Perspectives
por: Reddy, Gogulamudi Pradeep, et al.
Publicado: (2022) -
A Hybrid Bipolar Active Charge Balancing Technique with Adaptive Electrode Tissue Interface (ETI) Impedance Variations for Facial Paralysis Patients †
por: Moganti, Ganesh Lakshmana Kumar, et al.
Publicado: (2022) -
Quantum ensembles of quantum classifiers
por: Schuld, Maria, et al.
Publicado: (2018) -
Energy Consumption Forecasting for Smart Meters Using Extreme Learning Machine Ensemble
por: de Mattos Neto, Paulo S. G., et al.
Publicado: (2021) -
Design of adaptive ensemble classifier for online sentiment analysis and opinion mining
por: Kumar, Sanjeev, et al.
Publicado: (2021)