Cargando…

Partial Characterization of Lectins Purified from the Surco and Vara (Furrow and Rod) Varieties of Black Phaseolus vulgaris

As they manifest specifically and reversibly, lectins are proteins or glycoproteins with the characteristic of agglutinating erythrocytes. Given that grain legume lectins can represent 10% of protein content and can have various biological functions, they are extensively studied. The objective of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Valadez-Vega, Carmen, Lugo-Magaña, Olivia, Betanzos-Cabrera, Gabriel, Villagómez-Ibarra, José Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741355/
https://www.ncbi.nlm.nih.gov/pubmed/36500537
http://dx.doi.org/10.3390/molecules27238436
Descripción
Sumario:As they manifest specifically and reversibly, lectins are proteins or glycoproteins with the characteristic of agglutinating erythrocytes. Given that grain legume lectins can represent 10% of protein content and can have various biological functions, they are extensively studied. The objective of this work was to purify and partially characterize the lectins of Phaseolus vulgaris black, var surco and vara (LBBS and LBBV). Both lectin types were purified by affinity chromatography on stroma matrix, which agglutinated human erythrocytes type A, B, and O, as well as rabbit, hamster, pig, and chicken erythrocytes. Native-PAGE was employed for molecular mass determination, yielding 109.36 and 112.68 kDa for BBS and BBV, respectively. Further analyses revealed that these lectins are tetrameric glycoproteins that require Ca(+2), Mn(+2) and Mg(+2) ions for exhibiting their hemagglutinating function, which can be inhibited by fetuin. Moreover, optimal pH was established for both lectins (10.5 for LBBS and 7−9 for LBBV), while their activity was temperature-dependent and ceased above 70 °C. Finally, the observed differences in the biochemical characteristics and bioactive functions were ascribed to the different physiological characteristics of each seed, as well as the protein itself.