Cargando…

Transcriptomic landscape of TIMP3 oncosuppressor activity in thyroid carcinoma

BACKGROUND: Papillary thyroid cancer (PTC) is the most frequent thyroid tumor. The tissue inhibitor of metalloproteinase-3 (TIMP3) gene encodes a matrix metalloproteinases inhibitor that exerts a tumor suppressor role in several tumor types. TIMP3 is frequently downregulated in PTC by promoter methy...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazzoni, M., Todoerti, K., Agnelli, L., Minna, E., Pagliardini, S., Di Marco, T., Borrello, M. G., Neri, A., Greco, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743531/
https://www.ncbi.nlm.nih.gov/pubmed/36503426
http://dx.doi.org/10.1186/s12935-022-02811-8
Descripción
Sumario:BACKGROUND: Papillary thyroid cancer (PTC) is the most frequent thyroid tumor. The tissue inhibitor of metalloproteinase-3 (TIMP3) gene encodes a matrix metalloproteinases inhibitor that exerts a tumor suppressor role in several tumor types. TIMP3 is frequently downregulated in PTC by promoter methylation. We have previously functionally demonstrated that TIMP3 exerts an oncosuppressor role in PTC: TIMP3 restoration in the PTC-derived NIM1 cell line affects in vitro migration, invasion and adhesive capability, while reduces tumor growth, angiogenesis and macrophage recruitment in vivo. To get a deeper insight on the mediators of TIMP3 oncosuppressor activity in thyroid tumors, here we focused on the TIMP3 related transcriptome. METHODS: TCGA database was used for investigating the genes differentially expressed in PTC samples with low and high TIMP3 expression. Genome wide expression analysis of clones NIM1-T23 (expressing a high level of TIMP3 protein) and NIM1-EV (control empty vector) was performed. Gene sets and functional enrichment analysis with clusterProfiler were applied to identify the modulated biological processes and pathways. CIBERSORT was used to evaluate the distribution of different immunological cell types in TCGA-PTC tumor samples with different TIMP3 expression levels. Real time PCR was performed for the validation of selected genes. RESULTS: Thyroid tumors with TIMP3-high expression showed a down-modulation of inflammation-related gene sets, along with a reduced protumoral hematopoietic cells fraction; an enrichment of cell adhesion functions was also identified. Similar results were obtained in the TIMP3-overexpessing NIM1 cells in vitro model, where a down-regulation of immune-related function gene sets, some of which also identified in tumor samples, was observed. Interestingly, through enrichment analysis, were also recognized terms related to cell adhesion, extracellular matrix organization, blood vessel maintenance and vascular process functions that have been found modulated in our previous in vitro and in vivo functional studies. CONCLUSIONS: Our results highlight the correlation of TIMP3 expression levels with the regulation of inflammatory functions and the immune infiltration composition associated with different PTC prognosis, thus providing a broader view on the oncosuppressor role of TIMP3 in PTC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-022-02811-8.