Cargando…

DiviK: divisive intelligent K-means for hands-free unsupervised clustering in big biological data

BACKGROUND: Investigating molecular heterogeneity provides insights into tumour origin and metabolomics. The increasing amount of data gathered makes manual analyses infeasible—therefore, automated unsupervised learning approaches are utilised for discovering tissue heterogeneity. However, automated...

Descripción completa

Detalles Bibliográficos
Autores principales: Mrukwa, Grzegorz, Polanska, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743550/
https://www.ncbi.nlm.nih.gov/pubmed/36503372
http://dx.doi.org/10.1186/s12859-022-05093-z