Cargando…
Frequency of IRF5+ dendritic cells is associated with the TLR7-induced inflammatory cytokine response in SARS-CoV-2 infection
The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744680/ https://www.ncbi.nlm.nih.gov/pubmed/36529029 http://dx.doi.org/10.1016/j.cyto.2022.156109 |
Sumario: | The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates pathogen-induced immune responses via activation of the MyD88-dependent TLR signaling pathway. In the current study, the frequencies of IRF5+ DCs and the association with innate cytokine responses in SARS-CoV-2 infected individuals with different disease courses were investigated. In addition to a decreased number of mDC and pDC subsets, we could show reduced relative IRF5+ frequencies in mDCs of SARS-CoV-2 infected individuals compared with healthy donors. Functionally, mDCs of COVID-19 patients produced lower levels of IL-6 in response to in vitro TLR7 stimulation. IRF5+ mDCs more frequently produced IL-6 and TNF-α compared to their IRF5− counterparts upon TLR7 ligation. The correlation of IRF5+ mDCs with the frequencies of IL-6 and TNF-α producing mDCs were indicators for a role of IRF5 in the regulation of cytokine responses in mDCs. In conclusion, our data provide further insights into the underlying mechanisms of TLR7-dependent immune dysfunction and identify IRF5 as a potential immunomodulatory target in SARS-CoV-2 infection. |
---|