Cargando…

Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease

Vogt-Koyanagi-Harada disease (VKH) is an important refractory uveitis mediated by pathological T cells (TCs). Tofacitinib (TOFA) is a JAK- targeted therapy for several autoimmune diseases. However, the specific pathogenesis and targeted therapeutics for VKH remain largely unknown. Based on single-ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiuxing, Jiang, Qi, Lv, Jianjie, Yang, Shizhao, Huang, Zhaohao, Duan, Runping, Tao, Tianyu, Li, Zhaohuai, Ju, Rong, Zheng, Yingfeng, Su, Wenru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746911/
https://www.ncbi.nlm.nih.gov/pubmed/36301664
http://dx.doi.org/10.1172/jci.insight.162335
Descripción
Sumario:Vogt-Koyanagi-Harada disease (VKH) is an important refractory uveitis mediated by pathological T cells (TCs). Tofacitinib (TOFA) is a JAK- targeted therapy for several autoimmune diseases. However, the specific pathogenesis and targeted therapeutics for VKH remain largely unknown. Based on single-cell RNA sequencing and mass cytometry, we present what we believe is the first multimodal, high-dimensional analysis to generate a comprehensive human immune atlas regarding subset composition, gene signatures, enriched pathways, and intercellular interactions of VKH patients undergoing TOFA therapy. Patients with VKH are characterized by TCs’ polarization from naive to effector and memory subsets, together with accrued monocytes and upregulated cytokines and JAK/STAT signaling pathways. In vitro, TOFA reversed Th17/Treg imbalance and inhibited IL-2–induced STAT1/3 phosphorylation. TOFA alleviated VKH symptoms by restoring pathological TCs’ polarization and functional marker expression and downregulating cytokine signaling and lymphocyte function. Remarkably, inflammation-related responses and intercellular interactions decreased after TOFA treatment, particularly in monocytes. Notably, we identified 2 inflammation- and JAK-associated monocyte subpopulations that were strongly implicated in VKH pathogenesis and mechanisms involved in TOFA treatment. Here, we provide a potentially novel JAK-targeted therapy for VKH and elaborate on the possible therapeutic mechanisms of TOFA, expanding our knowledge of VKH pathological patterns.