Cargando…
Deep kernel learning of dynamical models from high-dimensional noisy data
This work proposes a stochastic variational deep kernel learning method for the data-driven discovery of low-dimensional dynamical models from high-dimensional noisy data. The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747975/ https://www.ncbi.nlm.nih.gov/pubmed/36513711 http://dx.doi.org/10.1038/s41598-022-25362-4 |