Cargando…
Deep kernel learning of dynamical models from high-dimensional noisy data
This work proposes a stochastic variational deep kernel learning method for the data-driven discovery of low-dimensional dynamical models from high-dimensional noisy data. The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables, and...
Autores principales: | Botteghi, Nicolò, Guo, Mengwu, Brune, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747975/ https://www.ncbi.nlm.nih.gov/pubmed/36513711 http://dx.doi.org/10.1038/s41598-022-25362-4 |
Ejemplares similares
-
A Robust Supervised Variable Selection for Noisy High-Dimensional Data
por: Kalina, Jan, et al.
Publicado: (2015) -
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
por: Reinbold, Patrick A. K., et al.
Publicado: (2021) -
Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences
por: Kefer, Paul, et al.
Publicado: (2021) -
Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network
por: Zhang, Shengli, et al.
Publicado: (2021) -
Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring
por: Zuidberg Dos Martires, Pedro, et al.
Publicado: (2020)