Cargando…

Unraveling the Abnormal Molecular Mechanism of Suicide Inhibition of Cytochrome P450 3A4

[Image: see text] Suicide inhibition of the CYP3A4 enzyme by a drug inactivates the enzyme in the drug biotransformation process and often shows safety concerns about the drug. Despite extensive experimental studies, the abnormal molecular mechanism of a suicide inhibitor that forms a covalent bond...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yang, Li, Junhao, Baryshnikov, Glib, Tu, Yaoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749025/
https://www.ncbi.nlm.nih.gov/pubmed/36457253
http://dx.doi.org/10.1021/acs.jcim.2c01035
Descripción
Sumario:[Image: see text] Suicide inhibition of the CYP3A4 enzyme by a drug inactivates the enzyme in the drug biotransformation process and often shows safety concerns about the drug. Despite extensive experimental studies, the abnormal molecular mechanism of a suicide inhibitor that forms a covalent bond with the residue far away from the catalytically active center of CYP3A4 inactivating the enzyme remains elusive. Here, the authors used molecular simulation approaches to study in detail how diquinone methide (DQR), the metabolite product of raloxifene, unbinds from CYP3A4 and inactivates the enzyme at the atomistic level. The results clearly indicate that in one of the intermediate states formed in its unbinding process, DQR covalently binds to Cys239, a residue far away from the catalytically active center of CYP3A4, and hinders the substrate from entering or leaving the enzyme. This work therefore provides an unprecedented way of clarifying the abnormal mechanism of suicide inhibition of the CYP3A4 enzyme.