Cargando…

Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles

Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapelner, Rachel A., Fisher, Rachel S., Elbaum-Garfinkle, Shana, Obermeyer, Allie C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749388/
https://www.ncbi.nlm.nih.gov/pubmed/36545145
http://dx.doi.org/10.1039/d2sc00192f
_version_ 1784850031722889216
author Kapelner, Rachel A.
Fisher, Rachel S.
Elbaum-Garfinkle, Shana
Obermeyer, Allie C.
author_facet Kapelner, Rachel A.
Fisher, Rachel S.
Elbaum-Garfinkle, Shana
Obermeyer, Allie C.
author_sort Kapelner, Rachel A.
collection PubMed
description Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, poly(oligoethylene glycol methacrylate-block-quaternized 4-vinylpyridine), POEGMA(79)-b-qP4VP(175), was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte complexes to deliver anionic proteins intracellularly. Using this model system, we have identified requirements for the formation of PEC micelles that are stable at physiological ionic strength and that smaller protein–polyelectrolyte complexes effectively deliver proteins to Jurkat cells.
format Online
Article
Text
id pubmed-9749388
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-97493882022-12-20 Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles Kapelner, Rachel A. Fisher, Rachel S. Elbaum-Garfinkle, Shana Obermeyer, Allie C. Chem Sci Chemistry Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, poly(oligoethylene glycol methacrylate-block-quaternized 4-vinylpyridine), POEGMA(79)-b-qP4VP(175), was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte complexes to deliver anionic proteins intracellularly. Using this model system, we have identified requirements for the formation of PEC micelles that are stable at physiological ionic strength and that smaller protein–polyelectrolyte complexes effectively deliver proteins to Jurkat cells. The Royal Society of Chemistry 2022-11-29 /pmc/articles/PMC9749388/ /pubmed/36545145 http://dx.doi.org/10.1039/d2sc00192f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Kapelner, Rachel A.
Fisher, Rachel S.
Elbaum-Garfinkle, Shana
Obermeyer, Allie C.
Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title_full Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title_fullStr Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title_full_unstemmed Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title_short Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
title_sort protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749388/
https://www.ncbi.nlm.nih.gov/pubmed/36545145
http://dx.doi.org/10.1039/d2sc00192f
work_keys_str_mv AT kapelnerrachela proteinchargeparametersthatinfluencestabilityandcellularinternalizationofpolyelectrolytecomplexmicelles
AT fisherrachels proteinchargeparametersthatinfluencestabilityandcellularinternalizationofpolyelectrolytecomplexmicelles
AT elbaumgarfinkleshana proteinchargeparametersthatinfluencestabilityandcellularinternalizationofpolyelectrolytecomplexmicelles
AT obermeyeralliec proteinchargeparametersthatinfluencestabilityandcellularinternalizationofpolyelectrolytecomplexmicelles