Cargando…
Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach
We apply a heterogeneous graph convolution network (GCN) combined with a multi-layer perceptron (MLP) denoted by GCNMLP to explore the potential side effects of drugs. Here the SIDER, OFFSIDERS, and FAERS are used as the datasets. We integrate the drug information with similar characteristics from t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750037/ https://www.ncbi.nlm.nih.gov/pubmed/36516131 http://dx.doi.org/10.1371/journal.pone.0266435 |