Cargando…
Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach
We apply a heterogeneous graph convolution network (GCN) combined with a multi-layer perceptron (MLP) denoted by GCNMLP to explore the potential side effects of drugs. Here the SIDER, OFFSIDERS, and FAERS are used as the datasets. We integrate the drug information with similar characteristics from t...
Autores principales: | Chen, Y.-H., Shih, Y.-T., Chien, C.-S., Tsai, C.-S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750037/ https://www.ncbi.nlm.nih.gov/pubmed/36516131 http://dx.doi.org/10.1371/journal.pone.0266435 |
Ejemplares similares
-
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks
por: Savalia, Shalin, et al.
Publicado: (2018) -
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
por: Amiri, S, et al.
Publicado: (2013) -
Developing a Tuned Three-Layer Perceptron Fed with Trained Deep Convolutional Neural Networks for Cervical Cancer Diagnosis
por: Fekri-Ershad, Shervan, et al.
Publicado: (2023) -
Application of a Multi-Layer Perceptron in Preoperative Screening for Orthognathic Surgery
por: Chaiprasittikul, Natkritta, et al.
Publicado: (2023) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020)