Cargando…

Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice

Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Aloi, Macarena S., Thompson, Samantha J., Quartapella, Nicholas, Noebels, Jeffrey L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753929/
https://www.ncbi.nlm.nih.gov/pubmed/36417872
http://dx.doi.org/10.1016/j.celrep.2022.111696
_version_ 1784851075557228544
author Aloi, Macarena S.
Thompson, Samantha J.
Quartapella, Nicholas
Noebels, Jeffrey L.
author_facet Aloi, Macarena S.
Thompson, Samantha J.
Quartapella, Nicholas
Noebels, Jeffrey L.
author_sort Aloi, Macarena S.
collection PubMed
description Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Sic7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events.
format Online
Article
Text
id pubmed-9753929
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-97539292022-12-15 Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice Aloi, Macarena S. Thompson, Samantha J. Quartapella, Nicholas Noebels, Jeffrey L. Cell Rep Article Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Sic7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events. 2022-11-22 /pmc/articles/PMC9753929/ /pubmed/36417872 http://dx.doi.org/10.1016/j.celrep.2022.111696 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Aloi, Macarena S.
Thompson, Samantha J.
Quartapella, Nicholas
Noebels, Jeffrey L.
Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title_full Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title_fullStr Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title_full_unstemmed Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title_short Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
title_sort loss of functional system x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of kcna1-ko mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753929/
https://www.ncbi.nlm.nih.gov/pubmed/36417872
http://dx.doi.org/10.1016/j.celrep.2022.111696
work_keys_str_mv AT aloimacarenas lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice
AT thompsonsamanthaj lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice
AT quartapellanicholas lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice
AT noebelsjeffreyl lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice