Cargando…
Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice
Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753929/ https://www.ncbi.nlm.nih.gov/pubmed/36417872 http://dx.doi.org/10.1016/j.celrep.2022.111696 |
_version_ | 1784851075557228544 |
---|---|
author | Aloi, Macarena S. Thompson, Samantha J. Quartapella, Nicholas Noebels, Jeffrey L. |
author_facet | Aloi, Macarena S. Thompson, Samantha J. Quartapella, Nicholas Noebels, Jeffrey L. |
author_sort | Aloi, Macarena S. |
collection | PubMed |
description | Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Sic7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events. |
format | Online Article Text |
id | pubmed-9753929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-97539292022-12-15 Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice Aloi, Macarena S. Thompson, Samantha J. Quartapella, Nicholas Noebels, Jeffrey L. Cell Rep Article Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Sic7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events. 2022-11-22 /pmc/articles/PMC9753929/ /pubmed/36417872 http://dx.doi.org/10.1016/j.celrep.2022.111696 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Aloi, Macarena S. Thompson, Samantha J. Quartapella, Nicholas Noebels, Jeffrey L. Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title | Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title_full | Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title_fullStr | Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title_full_unstemmed | Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title_short | Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-Ko mice |
title_sort | loss of functional system x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of kcna1-ko mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753929/ https://www.ncbi.nlm.nih.gov/pubmed/36417872 http://dx.doi.org/10.1016/j.celrep.2022.111696 |
work_keys_str_mv | AT aloimacarenas lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice AT thompsonsamanthaj lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice AT quartapellanicholas lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice AT noebelsjeffreyl lossoffunctionalsystemxcuncouplesaberrantpostnatalneurogenesisfromepileptogenesisinthehippocampusofkcna1komice |