Cargando…

Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach

The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Pallante, Lorenzo, Korfiati, Aigli, Androutsos, Lampros, Stojceski, Filip, Bompotas, Agorakis, Giannikos, Ioannis, Raftopoulos, Christos, Malavolta, Marta, Grasso, Gianvito, Mavroudi, Seferina, Kalogeras, Athanasios, Martos, Vanessa, Amoroso, Daria, Piga, Dario, Theofilatos, Konstantinos, Deriu, Marco A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758219/
https://www.ncbi.nlm.nih.gov/pubmed/36526644
http://dx.doi.org/10.1038/s41598-022-25935-3
_version_ 1784851995558936576
author Pallante, Lorenzo
Korfiati, Aigli
Androutsos, Lampros
Stojceski, Filip
Bompotas, Agorakis
Giannikos, Ioannis
Raftopoulos, Christos
Malavolta, Marta
Grasso, Gianvito
Mavroudi, Seferina
Kalogeras, Athanasios
Martos, Vanessa
Amoroso, Daria
Piga, Dario
Theofilatos, Konstantinos
Deriu, Marco A.
author_facet Pallante, Lorenzo
Korfiati, Aigli
Androutsos, Lampros
Stojceski, Filip
Bompotas, Agorakis
Giannikos, Ioannis
Raftopoulos, Christos
Malavolta, Marta
Grasso, Gianvito
Mavroudi, Seferina
Kalogeras, Athanasios
Martos, Vanessa
Amoroso, Daria
Piga, Dario
Theofilatos, Konstantinos
Deriu, Marco A.
author_sort Pallante, Lorenzo
collection PubMed
description The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.
format Online
Article
Text
id pubmed-9758219
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97582192022-12-18 Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach Pallante, Lorenzo Korfiati, Aigli Androutsos, Lampros Stojceski, Filip Bompotas, Agorakis Giannikos, Ioannis Raftopoulos, Christos Malavolta, Marta Grasso, Gianvito Mavroudi, Seferina Kalogeras, Athanasios Martos, Vanessa Amoroso, Daria Piga, Dario Theofilatos, Konstantinos Deriu, Marco A. Sci Rep Article The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties. Nature Publishing Group UK 2022-12-16 /pmc/articles/PMC9758219/ /pubmed/36526644 http://dx.doi.org/10.1038/s41598-022-25935-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pallante, Lorenzo
Korfiati, Aigli
Androutsos, Lampros
Stojceski, Filip
Bompotas, Agorakis
Giannikos, Ioannis
Raftopoulos, Christos
Malavolta, Marta
Grasso, Gianvito
Mavroudi, Seferina
Kalogeras, Athanasios
Martos, Vanessa
Amoroso, Daria
Piga, Dario
Theofilatos, Konstantinos
Deriu, Marco A.
Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title_full Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title_fullStr Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title_full_unstemmed Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title_short Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
title_sort toward a general and interpretable umami taste predictor using a multi-objective machine learning approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758219/
https://www.ncbi.nlm.nih.gov/pubmed/36526644
http://dx.doi.org/10.1038/s41598-022-25935-3
work_keys_str_mv AT pallantelorenzo towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT korfiatiaigli towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT androutsoslampros towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT stojceskifilip towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT bompotasagorakis towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT giannikosioannis towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT raftopouloschristos towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT malavoltamarta towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT grassogianvito towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT mavroudiseferina towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT kalogerasathanasios towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT martosvanessa towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT amorosodaria towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT pigadario towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT theofilatoskonstantinos towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach
AT deriumarcoa towardageneralandinterpretableumamitastepredictorusingamultiobjectivemachinelearningapproach