Cargando…

TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling

BACKGROUND: Cerebral ischemia/reperfusion (CI/R) injury is a destructive cerebrovascular disease associated with long-term disability and high mortality rates. TGR5 has been discovered in multiple human and animal tissues and to modulate a variety of physiological processes. The current study sought...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Hong, Chen, Yaoqi, Liu, Yalin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761130/
https://www.ncbi.nlm.nih.gov/pubmed/36544646
http://dx.doi.org/10.21037/atm-22-5225
_version_ 1784852640784449536
author Jia, Hong
Chen, Yaoqi
Liu, Yalin
author_facet Jia, Hong
Chen, Yaoqi
Liu, Yalin
author_sort Jia, Hong
collection PubMed
description BACKGROUND: Cerebral ischemia/reperfusion (CI/R) injury is a destructive cerebrovascular disease associated with long-term disability and high mortality rates. TGR5 has been discovered in multiple human and animal tissues and to modulate a variety of physiological processes. The current study sought to reveal the function of TGR5 in CI/R injury and uncover the latent regulatory mechanism. METHODS: A hypoxia/reoxygenation (H/R) model was established in mouse hippocampal HT22 cells. The TGR5 expression in the H/R-treated HT22 cells was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blots. After TGR5 was overexpressed, Cell Counting Kit-8 assays were used to estimate cell viability, and lactate dehydrogenase (LDH) release was assessed by a LDH assay kit. Cell apoptosis was measured by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assays. Cytochrome c release was detected by immunofluorescence assays and western blots were used to analyze the protein levels of apoptosis-related factors. The oxidative stress levels were assessed by corresponding kits. Next, SOX9 expression in the H/R-treated HT22 cells was tested by RT-qPCR and western blots. The interaction between the TGR5 promoter and SOX9 was verified by luciferase reporter and chromatin immunoprecipitation assays. Subsequently, after the H/R-treated HT22 cells had been co-transfected with TGR5 overexpression and SOX9 overexpression plasmids, TGR5 expression was tested by RT-qPCR and western blots, and the above-mentioned functional experiments were repeated. Finally, the expression of Nrf2/HO-1 signaling-related proteins was examined by western blots. RESULTS: TGR5 expression was significantly decreased in the H/R-exposed HT22 cells. The elevation of TGR5 enhanced the viability, hindered the apoptosis, and alleviated the oxidative stress of the HT22 cells under H/R conditions. Additionally, SOX9 had a strong affinity with TGR5 promoter, and TGR5 was transcriptionally inhibited by SOX9. Further, SOX9 overexpression restored the protective role of TGR5 upregulation in H/R-induced HT22 cell injury. Additionally, TGR5 overexpression mediated by SOX9 inhibition activated Nrf2/HO-1 signaling. CONCLUSIONS: TGR5 was transcriptionally inhibited by SOX9, and the overexpression of TGR5 played a protective role in CI/R injury.
format Online
Article
Text
id pubmed-9761130
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher AME Publishing Company
record_format MEDLINE/PubMed
spelling pubmed-97611302022-12-20 TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling Jia, Hong Chen, Yaoqi Liu, Yalin Ann Transl Med Original Article BACKGROUND: Cerebral ischemia/reperfusion (CI/R) injury is a destructive cerebrovascular disease associated with long-term disability and high mortality rates. TGR5 has been discovered in multiple human and animal tissues and to modulate a variety of physiological processes. The current study sought to reveal the function of TGR5 in CI/R injury and uncover the latent regulatory mechanism. METHODS: A hypoxia/reoxygenation (H/R) model was established in mouse hippocampal HT22 cells. The TGR5 expression in the H/R-treated HT22 cells was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blots. After TGR5 was overexpressed, Cell Counting Kit-8 assays were used to estimate cell viability, and lactate dehydrogenase (LDH) release was assessed by a LDH assay kit. Cell apoptosis was measured by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assays. Cytochrome c release was detected by immunofluorescence assays and western blots were used to analyze the protein levels of apoptosis-related factors. The oxidative stress levels were assessed by corresponding kits. Next, SOX9 expression in the H/R-treated HT22 cells was tested by RT-qPCR and western blots. The interaction between the TGR5 promoter and SOX9 was verified by luciferase reporter and chromatin immunoprecipitation assays. Subsequently, after the H/R-treated HT22 cells had been co-transfected with TGR5 overexpression and SOX9 overexpression plasmids, TGR5 expression was tested by RT-qPCR and western blots, and the above-mentioned functional experiments were repeated. Finally, the expression of Nrf2/HO-1 signaling-related proteins was examined by western blots. RESULTS: TGR5 expression was significantly decreased in the H/R-exposed HT22 cells. The elevation of TGR5 enhanced the viability, hindered the apoptosis, and alleviated the oxidative stress of the HT22 cells under H/R conditions. Additionally, SOX9 had a strong affinity with TGR5 promoter, and TGR5 was transcriptionally inhibited by SOX9. Further, SOX9 overexpression restored the protective role of TGR5 upregulation in H/R-induced HT22 cell injury. Additionally, TGR5 overexpression mediated by SOX9 inhibition activated Nrf2/HO-1 signaling. CONCLUSIONS: TGR5 was transcriptionally inhibited by SOX9, and the overexpression of TGR5 played a protective role in CI/R injury. AME Publishing Company 2022-11 /pmc/articles/PMC9761130/ /pubmed/36544646 http://dx.doi.org/10.21037/atm-22-5225 Text en 2022 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Original Article
Jia, Hong
Chen, Yaoqi
Liu, Yalin
TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title_full TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title_fullStr TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title_full_unstemmed TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title_short TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/HO-1 signaling
title_sort tgr5 overexpression mediated by the inhibition of transcription factor sox9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating nrf2/ho-1 signaling
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761130/
https://www.ncbi.nlm.nih.gov/pubmed/36544646
http://dx.doi.org/10.21037/atm-22-5225
work_keys_str_mv AT jiahong tgr5overexpressionmediatedbytheinhibitionoftranscriptionfactorsox9protectsagainsthypoxiareoxygenationinducedinjuryinhippocampalneuronsbyactivatingnrf2ho1signaling
AT chenyaoqi tgr5overexpressionmediatedbytheinhibitionoftranscriptionfactorsox9protectsagainsthypoxiareoxygenationinducedinjuryinhippocampalneuronsbyactivatingnrf2ho1signaling
AT liuyalin tgr5overexpressionmediatedbytheinhibitionoftranscriptionfactorsox9protectsagainsthypoxiareoxygenationinducedinjuryinhippocampalneuronsbyactivatingnrf2ho1signaling