Cargando…
A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy
Cancer gene therapy by small-interfering RNAs (siRNAs) holds great promise but is impeded by a low cytoplasmic delivery efficiency. The past two decades have witnessed many efforts that are dedicated to discover biomaterials in order to increase cellular uptake efficiency of siRNAs. However, less at...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763732/ https://www.ncbi.nlm.nih.gov/pubmed/36512940 http://dx.doi.org/10.1016/j.ultsonch.2022.106262 |
_version_ | 1784853124803985408 |
---|---|
author | Li, Gaigai Zhang, Yan Li, Jinbo |
author_facet | Li, Gaigai Zhang, Yan Li, Jinbo |
author_sort | Li, Gaigai |
collection | PubMed |
description | Cancer gene therapy by small-interfering RNAs (siRNAs) holds great promise but is impeded by a low cytoplasmic delivery efficiency. The past two decades have witnessed many efforts that are dedicated to discover biomaterials in order to increase cellular uptake efficiency of siRNAs. However, less attention has been paid to the lysosomal trapping dilemma that greatly restricts gene silencing outcomes. Herein, to address this challenge, we developed a sono-controllable strategy for ultrasound-promoted cytosolic siRNA delivery. A hybrid nanoassembly (HNA) was prepared via electrostatic self-assembly of a siRNA and a nona-arginine modified with protoporphyrin IX that is a sonosensitizer. After cellular uptake and exposure to sono-irradiation, HNA generated singlet oxygen to facilitate the lysosomal escape of siRNA to knock down anti-apoptotic Bcl-2 in the cytoplasm. We showed that the colocalization ratios between siRNA and the lysosome decreased from 91 % to 33 % post sono-irradiation; meanwhile, the gene silencing efficacy increased from 46 % to 68 % at 300 nM of HNA. Furthermore, sonodynamic therapy was achieved by the sonosensitizer under ultrasound irradiation, which combined gene therapy to eradicate cancer cells, resulting in a cell death rate of 82 %. This study thus presents a novel ultrasonic approach for effective cytoplasmic delivery of siRNAs and combinational sono-gene therapy of cancer. |
format | Online Article Text |
id | pubmed-9763732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97637322022-12-21 A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy Li, Gaigai Zhang, Yan Li, Jinbo Ultrason Sonochem UC and HC intensification Cancer gene therapy by small-interfering RNAs (siRNAs) holds great promise but is impeded by a low cytoplasmic delivery efficiency. The past two decades have witnessed many efforts that are dedicated to discover biomaterials in order to increase cellular uptake efficiency of siRNAs. However, less attention has been paid to the lysosomal trapping dilemma that greatly restricts gene silencing outcomes. Herein, to address this challenge, we developed a sono-controllable strategy for ultrasound-promoted cytosolic siRNA delivery. A hybrid nanoassembly (HNA) was prepared via electrostatic self-assembly of a siRNA and a nona-arginine modified with protoporphyrin IX that is a sonosensitizer. After cellular uptake and exposure to sono-irradiation, HNA generated singlet oxygen to facilitate the lysosomal escape of siRNA to knock down anti-apoptotic Bcl-2 in the cytoplasm. We showed that the colocalization ratios between siRNA and the lysosome decreased from 91 % to 33 % post sono-irradiation; meanwhile, the gene silencing efficacy increased from 46 % to 68 % at 300 nM of HNA. Furthermore, sonodynamic therapy was achieved by the sonosensitizer under ultrasound irradiation, which combined gene therapy to eradicate cancer cells, resulting in a cell death rate of 82 %. This study thus presents a novel ultrasonic approach for effective cytoplasmic delivery of siRNAs and combinational sono-gene therapy of cancer. Elsevier 2022-12-09 /pmc/articles/PMC9763732/ /pubmed/36512940 http://dx.doi.org/10.1016/j.ultsonch.2022.106262 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | UC and HC intensification Li, Gaigai Zhang, Yan Li, Jinbo A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title | A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title_full | A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title_fullStr | A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title_full_unstemmed | A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title_short | A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy |
title_sort | hybrid nanoassembly for ultrasound-inducible cytosolic sirna delivery and cancer sono-gene therapy |
topic | UC and HC intensification |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763732/ https://www.ncbi.nlm.nih.gov/pubmed/36512940 http://dx.doi.org/10.1016/j.ultsonch.2022.106262 |
work_keys_str_mv | AT ligaigai ahybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy AT zhangyan ahybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy AT lijinbo ahybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy AT ligaigai hybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy AT zhangyan hybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy AT lijinbo hybridnanoassemblyforultrasoundinduciblecytosolicsirnadeliveryandcancersonogenetherapy |