Cargando…
Directed Evolution Detects Supernumerary Centric Chromosomes Conferring Resistance to Azoles in Candida auris
Candida auris exhibits resistance to multiple antifungal drug classes and sterilization agents, posing threats to the immunocompromised worldwide. Among the four major geographical clades, the East Asian clade 2 isolates of C. auris are mostly drug susceptible. In this study, we experimentally evolv...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765433/ https://www.ncbi.nlm.nih.gov/pubmed/36445083 http://dx.doi.org/10.1128/mbio.03052-22 |
Sumario: | Candida auris exhibits resistance to multiple antifungal drug classes and sterilization agents, posing threats to the immunocompromised worldwide. Among the four major geographical clades, the East Asian clade 2 isolates of C. auris are mostly drug susceptible. In this study, we experimentally evolved one such drug-susceptible isolate for multiple generations in the presence of the antifungal compound fluconazole and analyzed changes in the karyotype, DNA sequence, and gene expression profiles in three evolved drug-resistant isolates. Next-generation sequencing and electrophoretic karyotyping confirm the presence of segmental aneuploidy as supernumerary chromosomes originating from centromere-inclusive chromosomal duplication events in two such cases. A 638-kb region and a 675-kb region, both of which originated from chromosome 5 and contained its centromere region, are instances of supernumerary chromosome formation identified in two evolved fluconazole-resistant isolates. Loss of the supernumerary chromosomes from the drug-resistant isolates results in a complete reversal of fluconazole susceptibility. Transcriptome analysis of the third isolate identified overexpression of drug efflux pumps as a possible non-aneuploidy-driven mechanism of drug resistance. Together, this study reveals how both aneuploidy-driven and aneuploidy-independent mechanisms may operate in parallel in an evolving population of C. auris in the presence of an antifungal drug, in spite of starting from the same strain grown under similar conditions, to attain various levels of fluconazole resistance. |
---|