Cargando…

Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis

Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we re...

Descripción completa

Detalles Bibliográficos
Autores principales: Reinhardt, Laura, Thomy, Dhana, Lakemeyer, Markus, Westermann, Linda Maria, Ortega, Joaquin, Sieber, Stephan A., Sass, Peter, Brötz-Oesterhelt, Heike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765437/
https://www.ncbi.nlm.nih.gov/pubmed/36286522
http://dx.doi.org/10.1128/mbio.01413-22
Descripción
Sumario:Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we report on the composition of the housekeeping Clp protease in Streptomyces, consisting of a heterotetradecameric core built of ClpP1, ClpP2, and the cognate Clp-ATPases ClpX, ClpC1, or ClpC2, all interacting with ClpP2 only. Antibiotic acyldepsipeptides (ADEP) dysregulate the Clp protease for unregulated proteolysis. We observed that ADEP binds Streptomyces ClpP1, but not ClpP2, thereby not only triggering the degradation of nonnative protein substrates but also accelerating Clp-ATPase-dependent proteolysis. The explanation is the concomitant binding of ADEP and Clp-ATPases to opposite sides of the ClpP1P2 barrel, hence revealing a third, so far unknown mechanism of ADEP action, i.e., the accelerated proteolysis of native protein substrates by the Clp protease.