Cargando…

HMGB1 promotes Ox-LDL-induced endothelial cell damage by inhibiting PI3K/Akt signaling pathway

BACKGROUND: Atherosclerosis is the pathological basis of cardio-cerebrovascular diseases. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for atherosclerosis. Ox-LDL leads to endothelial cell (EC) damage and dysfunction through various processes and promotes the occurrence and...

Descripción completa

Detalles Bibliográficos
Autores principales: Huo, Xin, Su, Boyou, Qin, Guoti, Zhao, Liming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768960/
https://www.ncbi.nlm.nih.gov/pubmed/36544080
http://dx.doi.org/10.1186/s12872-022-03003-y
Descripción
Sumario:BACKGROUND: Atherosclerosis is the pathological basis of cardio-cerebrovascular diseases. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for atherosclerosis. Ox-LDL leads to endothelial cell (EC) damage and dysfunction through various processes and promotes the occurrence and deterioration of atherosclerosis. High mobility group box-1 (HMGB1) is a protein associated with cellular damage. In the present study, the effect of HMGB1 on ox-LDL-induced EC damage was determined and the underlying mechanism explored. MATERIALS AND METHODS: Human umbilical vein ECs (HUVECs) were exposed to ox-LDL to induce endothelial damage and changes in HMGB1 expression level were detected using western blotting analysis and reverse transcription-quantitative PCR. To observe the effect of HMGB1 on ox-LDL-induced damage, the HMGB1 expression was downregulated with siRNA, and cell viability, cytotoxicity, and apoptosis rate were assessed. HUVECs were pretreated with LY294002, an inhibitor of the PI3K/Akt pathway, to determine whether the effect of HMGB1 on damage is via the PI3K-Akt pathway. RESULTS: The results showed that ox-LDL can upregulate HMGB1 expression in HUVECs and downregulation of HMGB1 expression can prevent ox-LDL-induced damage in HUVECs. Furthermore, the effect of HMGB1 on ox-LDL-induced damage could be promoted by inhibiting the PI3K/Akt signaling pathway. CONCLUSION: The results indicate HMGB1 may be a promising research target to alleviate ox-LDL-induced EC damage. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-022-03003-y.