Cargando…
Statistical biases due to anonymization evaluated in an open clinical dataset from COVID-19 patients
Anonymization has the potential to foster the sharing of medical data. State-of-the-art methods use mathematical models to modify data to reduce privacy risks. However, the degree of protection must be balanced against the impact on statistical properties. We studied an extreme case of this trade-of...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769467/ https://www.ncbi.nlm.nih.gov/pubmed/36543828 http://dx.doi.org/10.1038/s41597-022-01669-9 |