Cargando…
Enhanced Rishirilide Biosynthesis by a Rare In-Cluster Phosphopantetheinyl Transferase in Streptomyces xanthophaeus
Phosphopantetheinyl transferases (PPTases) play important roles in activating apo-acyl carrier proteins (apo-ACPs) and apo-peptidyl carrier proteins (apo-PCPs) in both primary and secondary metabolism. PPTases catalyze the posttranslational modifications of those carrier proteins by covalent attachm...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769936/ https://www.ncbi.nlm.nih.gov/pubmed/36326495 http://dx.doi.org/10.1128/spectrum.03247-22 |
Sumario: | Phosphopantetheinyl transferases (PPTases) play important roles in activating apo-acyl carrier proteins (apo-ACPs) and apo-peptidyl carrier proteins (apo-PCPs) in both primary and secondary metabolism. PPTases catalyze the posttranslational modifications of those carrier proteins by covalent attachment of the 4′-phosphopantetheine group to a conserved serine residue. The protein-protein interactions between a PPTase and a cognate acyl or peptidyl carrier protein have important regulatory functions in microbial biosynthesis, but the molecular mechanism underlying their specific recognition remains elusive. In this study, we identified a new rishirilide biosynthetic gene cluster with a rare in-cluster PPTase from Streptomyces xanthophaeus no2. The function of this Sfp-type PPTase, SxrX, in rishirilide production was confirmed using genetic mutagenesis and biochemical characterization. We applied molecular modeling and site-directed mutagenesis to identify key residues mediating the protein-protein interaction between SxrX and its cognate ACP. In addition, six natural products were isolated from wild-type S. xanthophaeus no2 and the ΔsxrX mutant, including rishirilide A and lupinacidin A, that exhibited antimicrobial and anticancer activities, respectively. SxrX is the first Sfp-type PPTase identified from an aromatic polyketide biosynthetic gene cluster and shown to be responsible for high-level production of rishirilide derivatives. IMPORTANCE Genome mining has been a vital means for natural product drug discovery in the postgenomic era. The rishirilide-type polyketides have attracted attention due to their potent bioactivity, but the poor robustness of production hosts has limited further research and development. This study not only identifies a hyperproducer of rishirilides but also reveals a rare, in-cluster PPTase SxrX that plays an important role in boosting rishirilide biosynthesis. Experimental and computational investigations revealed new insights on the protein-protein interaction between SxrX and its cognate ACP with wide implications for understanding polyketide biosynthesis. |
---|