Cargando…
Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning
BACKGROUND: Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. METHODS: ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773397/ https://www.ncbi.nlm.nih.gov/pubmed/36569892 http://dx.doi.org/10.3389/fimmu.2022.1046410 |