Cargando…
Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning
BACKGROUND: Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. METHODS: ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes,...
Autores principales: | Lai, Yongxing, Lin, Peiqiang, Lin, Fan, Chen, Manli, Lin, Chunjin, Lin, Xing, Wu, Lijuan, Zheng, Mouwei, Chen, Jianhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773397/ https://www.ncbi.nlm.nih.gov/pubmed/36569892 http://dx.doi.org/10.3389/fimmu.2022.1046410 |
Ejemplares similares
-
Integration of bulk RNA sequencing and single-cell analysis reveals a global landscape of DNA damage response in the immune environment of Alzheimer’s disease
por: Lai, Yongxing, et al.
Publicado: (2023) -
Identification of endoplasmic reticulum stress-associated genes and subtypes for prediction of Alzheimer’s disease based on interpretable machine learning
por: Lai, Yongxing, et al.
Publicado: (2022) -
Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function
por: Lai, Yongxing, et al.
Publicado: (2020) -
Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer's disease
por: Lai, Yongxing, et al.
Publicado: (2022) -
Comprehensive Analysis of Molecular Subtypes and Hub Genes of Sepsis by Gene Expression Profiles
por: Lai, Yongxing, et al.
Publicado: (2022)