Cargando…
Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control
For the multi-objective control problem of tracking effect and vehicle stability in the path tracking process of six-wheel distributed unmanned vehicles, a control strategy based on hierarchical control (HC) theory is proposed. A hierarchical kinematic model is designed considering the structural ad...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775091/ https://www.ncbi.nlm.nih.gov/pubmed/36546938 http://dx.doi.org/10.3390/biomimetics7040238 |
_version_ | 1784855558926368768 |
---|---|
author | Zou, Teng’an You, Yulong Meng, Hao Chang, Yukang |
author_facet | Zou, Teng’an You, Yulong Meng, Hao Chang, Yukang |
author_sort | Zou, Teng’an |
collection | PubMed |
description | For the multi-objective control problem of tracking effect and vehicle stability in the path tracking process of six-wheel distributed unmanned vehicles, a control strategy based on hierarchical control (HC) theory is proposed. A hierarchical kinematic model is designed considering the structural advantages of independent steering and independent driving of the unmanned vehicle, and this model is applied to the path tracking strategy. The strategy is divided into two levels of control. The upper level of control is to use the upper-level kinematic model as the prediction model of model predictive control (MPC), and to convert the solution problem of future control increments into the optimal solution problem of quadratic programming by setting the optimal objective function and constraints. The lower level of control is to map the optimal control quantities obtained from the upper level control to the six-wheel speeds and the four-wheel turning angles through the lower-level kinematics, and to design the six-wheel torque distribution rules based on deterministic torque and stability-based slip rate control for executing the control requirements of the upper level controller to prevent the unmanned vehicle from generating sideslip and precisely generating transverse moment to ensure the stable driving of the unmanned vehicle. Experiments were conducted on the Trucksim/Simulink simulation platform for a variety of road conditions, and the results showed that hierarchical control improved the accuracy of tracking the desired path and the driving stability on complex road surfaces more than MPC. |
format | Online Article Text |
id | pubmed-9775091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97750912022-12-23 Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control Zou, Teng’an You, Yulong Meng, Hao Chang, Yukang Biomimetics (Basel) Article For the multi-objective control problem of tracking effect and vehicle stability in the path tracking process of six-wheel distributed unmanned vehicles, a control strategy based on hierarchical control (HC) theory is proposed. A hierarchical kinematic model is designed considering the structural advantages of independent steering and independent driving of the unmanned vehicle, and this model is applied to the path tracking strategy. The strategy is divided into two levels of control. The upper level of control is to use the upper-level kinematic model as the prediction model of model predictive control (MPC), and to convert the solution problem of future control increments into the optimal solution problem of quadratic programming by setting the optimal objective function and constraints. The lower level of control is to map the optimal control quantities obtained from the upper level control to the six-wheel speeds and the four-wheel turning angles through the lower-level kinematics, and to design the six-wheel torque distribution rules based on deterministic torque and stability-based slip rate control for executing the control requirements of the upper level controller to prevent the unmanned vehicle from generating sideslip and precisely generating transverse moment to ensure the stable driving of the unmanned vehicle. Experiments were conducted on the Trucksim/Simulink simulation platform for a variety of road conditions, and the results showed that hierarchical control improved the accuracy of tracking the desired path and the driving stability on complex road surfaces more than MPC. MDPI 2022-12-12 /pmc/articles/PMC9775091/ /pubmed/36546938 http://dx.doi.org/10.3390/biomimetics7040238 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zou, Teng’an You, Yulong Meng, Hao Chang, Yukang Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title | Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title_full | Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title_fullStr | Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title_full_unstemmed | Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title_short | Research on Six-Wheel Distributed Unmanned Vehicle Path Tracking Strategy Based on Hierarchical Control |
title_sort | research on six-wheel distributed unmanned vehicle path tracking strategy based on hierarchical control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775091/ https://www.ncbi.nlm.nih.gov/pubmed/36546938 http://dx.doi.org/10.3390/biomimetics7040238 |
work_keys_str_mv | AT zoutengan researchonsixwheeldistributedunmannedvehiclepathtrackingstrategybasedonhierarchicalcontrol AT youyulong researchonsixwheeldistributedunmannedvehiclepathtrackingstrategybasedonhierarchicalcontrol AT menghao researchonsixwheeldistributedunmannedvehiclepathtrackingstrategybasedonhierarchicalcontrol AT changyukang researchonsixwheeldistributedunmannedvehiclepathtrackingstrategybasedonhierarchicalcontrol |