Cargando…

Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice

Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca(2+) elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyper...

Descripción completa

Detalles Bibliográficos
Autores principales: Institoris, Adam, Vandal, Milène, Peringod, Govind, Catalano, Christy, Tran, Cam Ha, Yu, Xinzhu, Visser, Frank, Breiteneder, Cheryl, Molina, Leonardo, Khakh, Baljit S., Nguyen, Minh Dang, Thompson, Roger J., Gordon, Grant R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780254/
https://www.ncbi.nlm.nih.gov/pubmed/36550102
http://dx.doi.org/10.1038/s41467-022-35383-2
_version_ 1784856796077228032
author Institoris, Adam
Vandal, Milène
Peringod, Govind
Catalano, Christy
Tran, Cam Ha
Yu, Xinzhu
Visser, Frank
Breiteneder, Cheryl
Molina, Leonardo
Khakh, Baljit S.
Nguyen, Minh Dang
Thompson, Roger J.
Gordon, Grant R.
author_facet Institoris, Adam
Vandal, Milène
Peringod, Govind
Catalano, Christy
Tran, Cam Ha
Yu, Xinzhu
Visser, Frank
Breiteneder, Cheryl
Molina, Leonardo
Khakh, Baljit S.
Nguyen, Minh Dang
Thompson, Roger J.
Gordon, Grant R.
author_sort Institoris, Adam
collection PubMed
description Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca(2+) elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca(2+) signaling in vivo by expressing a plasma membrane Ca(2+) ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca(2+) using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca(2+) is to amplify functional hyperemia when neuronal activation is prolonged.
format Online
Article
Text
id pubmed-9780254
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97802542022-12-24 Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice Institoris, Adam Vandal, Milène Peringod, Govind Catalano, Christy Tran, Cam Ha Yu, Xinzhu Visser, Frank Breiteneder, Cheryl Molina, Leonardo Khakh, Baljit S. Nguyen, Minh Dang Thompson, Roger J. Gordon, Grant R. Nat Commun Article Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca(2+) elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca(2+) signaling in vivo by expressing a plasma membrane Ca(2+) ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca(2+) using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca(2+) is to amplify functional hyperemia when neuronal activation is prolonged. Nature Publishing Group UK 2022-12-22 /pmc/articles/PMC9780254/ /pubmed/36550102 http://dx.doi.org/10.1038/s41467-022-35383-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Institoris, Adam
Vandal, Milène
Peringod, Govind
Catalano, Christy
Tran, Cam Ha
Yu, Xinzhu
Visser, Frank
Breiteneder, Cheryl
Molina, Leonardo
Khakh, Baljit S.
Nguyen, Minh Dang
Thompson, Roger J.
Gordon, Grant R.
Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title_full Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title_fullStr Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title_full_unstemmed Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title_short Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
title_sort astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780254/
https://www.ncbi.nlm.nih.gov/pubmed/36550102
http://dx.doi.org/10.1038/s41467-022-35383-2
work_keys_str_mv AT institorisadam astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT vandalmilene astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT peringodgovind astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT catalanochristy astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT trancamha astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT yuxinzhu astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT visserfrank astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT breitenedercheryl astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT molinaleonardo astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT khakhbaljits astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT nguyenminhdang astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT thompsonrogerj astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice
AT gordongrantr astrocytesamplifyneurovascularcouplingtosustainedactivationofneocortexinawakemice