Cargando…
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
This paper presents a generic framework for fault prognosis using autoencoder-based deep learning methods. The proposed approach relies upon a semi-supervised extrapolation of autoencoder reconstruction errors, which can deal with the unbalanced proportion between faulty and non-faulty data in an in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784711/ https://www.ncbi.nlm.nih.gov/pubmed/36560107 http://dx.doi.org/10.3390/s22249738 |