Cargando…
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
This paper presents a generic framework for fault prognosis using autoencoder-based deep learning methods. The proposed approach relies upon a semi-supervised extrapolation of autoencoder reconstruction errors, which can deal with the unbalanced proportion between faulty and non-faulty data in an in...
Autores principales: | da Rosa, Tiago Gaspar, Melani, Arthur Henrique de Andrade, Pereira, Fabio Henrique, Kashiwagi, Fabio Norikazu, de Souza, Gilberto Francisco Martha, Salles, Gisele Maria De Oliveira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784711/ https://www.ncbi.nlm.nih.gov/pubmed/36560107 http://dx.doi.org/10.3390/s22249738 |
Ejemplares similares
-
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022) -
Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders
por: Kucharski, Dariusz, et al.
Publicado: (2020) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020)