Cargando…

Finding a Landing Site in an Urban Area: A Multi-Resolution Probabilistic Approach

This paper considers the problem of finding a landing spot for a drone in a dense urban environment. The conflicting requirements of fast exploration and high resolution are solved using a multi-resolution approach, by which visual information is collected by the drone at decreasing altitudes so tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinkovich, Barak, Matalon, Boaz, Rivlin, Ehud, Rotstein, Hector
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786308/
https://www.ncbi.nlm.nih.gov/pubmed/36560175
http://dx.doi.org/10.3390/s22249807
Descripción
Sumario:This paper considers the problem of finding a landing spot for a drone in a dense urban environment. The conflicting requirements of fast exploration and high resolution are solved using a multi-resolution approach, by which visual information is collected by the drone at decreasing altitudes so that the spatial resolution of the acquired images increases monotonically. A probability distribution is used to capture the uncertainty of the decision process for each terrain patch. The distributions are updated as information from different altitudes is collected. When the confidence level for one of the patches becomes larger than a prespecified threshold, suitability for landing is declared. One of the main building blocks of the approach is a semantic segmentation algorithm that attaches probabilities to each pixel of a single view. The decision algorithm combines these probabilities with a priori data and previous measurements to obtain the best estimates. Feasibility is illustrated by presenting several examples generated by a realistic closed-loop simulator.