Cargando…

Nutrition Education to Reduce Metabolic Dysfunction for Spinal Cord Injury: A Module-Based Nutrition Education Guide for Healthcare Providers and Consumers

Spinal cord injury (SCI) results in a high prevalence of neurogenic obesity and metabolic dysfunction. The increased risk for neurogenic obesity and metabolic dysfunction is mainly due to the loss of energy balance because of significantly reduced energy expenditure following SCI. Consequently, exce...

Descripción completa

Detalles Bibliográficos
Autores principales: Sneij, Alicia, Farkas, Gary J., Carino Mason, Marisa Renee, Gater, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786330/
https://www.ncbi.nlm.nih.gov/pubmed/36556250
http://dx.doi.org/10.3390/jpm12122029
Descripción
Sumario:Spinal cord injury (SCI) results in a high prevalence of neurogenic obesity and metabolic dysfunction. The increased risk for neurogenic obesity and metabolic dysfunction is mainly due to the loss of energy balance because of significantly reduced energy expenditure following SCI. Consequently, excessive energy intake (positive energy balance) leads to adipose tissue accumulation at a rapid rate, resulting in neurogenic obesity, systemic inflammation, and metabolic dysfunction. The purpose of this article is to review the existing literature on nutrition, dietary intake, and nutrition education in persons with SCI as it relates to metabolic dysfunction. The review will highlight the poor dietary intakes of persons with SCI according to authoritative guidelines and the need for nutrition education for health care professionals and consumers. Nutrition education topics are presented in a module-based format with supporting literature. The authors emphasize the role of a diet consisting of low-energy, nutrient-dense, anti-inflammatory foods consistent with the Dietary Guidelines for Americans’ MyPlate to effectively achieve energy balance and reduce the risk for neurogenic obesity and metabolic dysfunction in individuals with SCI.