Cargando…
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Goal: Building a DL model that can be trained on small EEG training set of a single subject presents an interesting challenge that this work is trying to address. In particular, this study is trying to avoid the need for long EEG data collection sessions, and without combining multiple subjects trai...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788676/ https://www.ncbi.nlm.nih.gov/pubmed/36578777 http://dx.doi.org/10.1109/OJEMB.2022.3220150 |
Ejemplares similares
-
Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images
por: Özdemir, Özgür, et al.
Publicado: (2022) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Input Shape Effect on Classification Performance of Raw EEG Motor Imagery Signals with Convolutional Neural Networks for Use in Brain—Computer Interfaces
por: Arı, Emre, et al.
Publicado: (2023) -
Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
por: Lee, Hyeon Kyu, et al.
Publicado: (2019) -
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
por: Luo, Jing, et al.
Publicado: (2023)